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A class of self-assembling peptide nanofiber scaffolds has been shown to be an excellent biological material for 3-dimension
cell culture and stimulating cell migration into the scaffold, as well as for repairing tissue defects in animals. We report here the
development of several peptide nanofiber scaffolds designed specifically for osteoblasts. We designed one of the pure self-
assembling peptide scaffolds RADA16-I through direct coupling to short biologically active motifs. The motifs included
osteogenic growth peptide ALK (ALKRQGRTLYGF) bone-cell secreted-signal peptide, osteopontin cell adhesion motif DGR
(DGRGDSVAYG) and 2-unit RGD binding sequence PGR (PRGDSGYRGDS). We made the new peptide scaffolds by mixing the
pure RAD16 and designer-peptide solutions, and we examined the molecular integration of the mixed nanofiber scaffolds
using AFM. Compared to pure RAD16 scaffold, we found that these designer peptide scaffolds significantly promoted mouse
pre-osteoblast MC3T3-E1 cell proliferation. Moreover, alkaline phosphatase (ALP) activity and osteocalcin secretion, which are
early and late markers for osteoblastic differentiation, were also significantly increased. We demonstrated that the designer,
self-assembling peptide scaffolds promoted the proliferation and osteogenic differentiation of MC3T3-E1. Under the identical
culture medium condition, confocal images unequivocally demonstrated that the designer PRG peptide scaffold stimulated
cell migration into the 3-D scaffold. Our results suggest that these designer peptide scaffolds may be very useful for promoting
bone tissue regeneration.

Citation: Horii A, Wang X, Gelain F, Zhang S (2007) Biological Designer Self-Assembling Peptide Nanofiber Scaffolds Significantly Enhance Osteoblast
Proliferation, Differentiation and 3-D Migration. PLoS ONE 2(2): e190. doi:10.1371/journal.pone.0000190

INTRODUCTION
Regenerative medicine and tissue engineering require two com-

plementary key ingredients: 1) biologically compatible scaffolds

that can be readily adopted by the body system without harm, and

2) suitable cells including various stem cells or primary cells that

effectively replace the damaged tissues without adverse conse-

quences. However, it would be advantageous if one could apply

suitable and active biological scaffolds to stimulate and promote

cell differentiation, in addition to regenerating tissues without

introducing foreign cells.

We previously reported the discovery and development of a class

of self-assembling peptides made of only natural amino acids. This

class of material peptides can undergo spontaneous assembly into

well-ordered nanofibers and scaffolds, ,10 nm in fiber diameter

with pores between 5–200 nm and over 99% water content[1,2].

These peptide scaffolds have three-dimensional nanofiber struc-

tures similar to the natural extracelluar matrices including collagen.

They can readily be designed further to serve as a biomimic

synthetic extracelluar matrix. These peptides have been used for

the study of cell attachment, survival and proliferation[2–4], and

injection into animals[3,4]. When mixed together with other

porous polymer scaffolds, the peptide scaffolds enhanced osteo-

blast growth and differentiation, suggesting possible application for

bone tissue engineering[5].

The extracellular matrix is important, not only as a structural

component for supporting cells, but also as a suitable micro-

environment that influences cell-function. A number of short

sequences in proteins located in the extracelluar matrix have

recently been identified to play important roles for bone regener-

ation, including osteoblast proliferation, migration and differentia-

tion[6–9]. These short peptides are secreted from cells locally [10]

or in remote organs[11], and they have been shown to promote

bone regeneration.

In the past few decades, a number of polymers and biopolymers

have been attached with known biologically active peptide motifs

from a variety of extracelluar matrix proteins to promote specific

cellular responses[9,12–14]. Modification of polymer scaffolds

with cell attachment motif increased cell attachment and pro-

liferation[9,13,14]. However, the progress in truly accelerated

bone regeneration is still slow. A simple, inexpensive and universal

bone regeneration treatment is still not available. Because of the

increasing aging population in the world, bone disease will become

more and more common, thus effective treatment for rapid bone

regeneration becomes more and more urgent.

Recently a class of designer self-assembling peptide scaffolds has

also been functionalized directly through solid-phase synthesis

extension at the C-termini with short sequences including bone

marrow homing motifs. These purely designer peptide scaffolds

not only significantly enhanced adult mouse neural stem cell

Academic Editor: Mark Isalan, Center for Genomic Regulation, Spain

Received November 30, 2006; Accepted January 10, 2007; Published February 7,
2007

Copyright: � 2007 Horii et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author
and source are credited.

Funding: Akihiro Horii is from Olympus Corp. Dr. Xiumei Wang is supported by
Olympus Corp. Fabrizio Gelain was from CARIPLO and Hospital S. Raffaele, Milano,
Italy but supported by Olympus Corp.

Competing Interests: SZ is one of the inventors of the self-assembling peptides
and also a co-founder of 3DM, Inc., a MIT startup that licenses the peptide scaffold
patents to BD Biosciences for research distribution. We both purchased RADA16-I
(PuraMatrix) from BD Biosciences and received as a gift from 3DM.

* To whom correspondence should be addressed. E-mail: Shuguang@mit.edu

PLoS ONE | www.plosone.org 1 February 2007 | Issue 2 | e190



survival, proliferation, but also differentiation into neurons and

glial cells [15]. Those studies encouraged us to specifically select

a few relevant motifs to design new peptide scaffolds specifically for

bone 3D cell culture to assess their activities. These active bone

motifs are described below.

The osteogenic growth peptide OGP (ALKRQGRTLYGFGG)

is a key factor in the mechanism of the systemic osteogenic

response to local bone marrow injury. OGP level is increased in

the serum in vivo during osteogenic reactions in the form of

OGP-OGP binding protein complex. When it is applied to pre-

osteoblast in vitro, OGP promotes bone cell proliferation and

differentiation, which is indicated by increasing ALP Alkaline

phosphatase activity[16]. When it is administered in vivo, OGP

stimulates osteogenesis and hematopoiesis[16,17].

Osteopontin, which has 264 to 301 amino acids depending on

the species, is synthesized and phosphorylated in both osteoblasts

and osteoclasts in bone. During odontogenesis, it is made by

odontoblasts. Osteopontin regulates cell adhesion, migration,

survival, NF-kB activity, NO synthesis and calcium crystal

formation[18]. Osteopontin contains highly conserved functional

domains, including calcium and heparin binding regions and a cell

adhesion motif. The cell adhesion motif (DGRGDSVAYG)

contains an RGD sequence and is highly conserved in many species.

Many investigators have studied the biological activities of the

short peptide sequence Arg–Gly–Asp (RGD), which is present in

fibronectin and many other extracellular matrix proteins. RGD

sequence is important for cell adhesion[19]. Immobilization of

RGD motif to polymers and alginate gel improves bone formation

in vitro and in vivo[14].

Here we report the functionalization of the RADA16 self-

assembling peptide scaffold RADA16 (AcN–RADARADARAD-

ARADA–CONH2) through direct solid phase synthesis extension

at the C-termini with three short motifs from the osteogenic

growth peptide OGP, the Osteopontin cell adhesion motif

described above, and a designed 2-unit RGD binding sequence

(PRGDSGYRGDS).

We showed that these designer peptide scaffolds significantly

increased mouse preosteoblast MC3T3-E1 proliferation in com-

parison to pure RADA16 peptide scaffold. Moreover, the designer

scaffolds promoted alkaline phosphatase (ALP) activity and

Osteocalcin secretion, which suggests cell differentiation towards

bone formation. These experiments showed that cell proliferation

is enhanced using the mix of functional and pure RADA16

peptide scaffold in a concentration dependent manner. Most

significantly, our observation show that the designer peptide

scaffolds stimulated cell migration into the 3D scaffold, a key factor

for the accelerated tissue regenerations. These results suggest that

designer peptide scaffolds may be useful for bone regeneration and

bone tissue engineering.

RESULTS

Synthesis of new designer self-assembling peptides
We functionalized RADA16 with three biologically active motifs

in order to develop a second generation of self-assembling peptide

scaffolds to closer mimic extracellular matrices that enhance pre-

osteoblast cell maintenance and function in vitro. These new

peptide scaffolds were made by extending the original RADA16 at

the C-terminus directly through solid phase synthesis with three

short peptide motifs. They are an osteogenic growth peptide OGP

(ALKRQGRTLYGFGG), Osteopontin cell adhesion motif DGR

(DGRGDSVAYG) and a specifically designed 2 units of RGD

sequence (PRGDSGYRGDS). These designer peptide sequences

are listed in Table 1.

The peptides were solubilized in water at a concentration of

10 mg/ml (1% w/v). DGR formed a hydrogel, but ALK and PRG

remained as a non-viscous solution. When all peptide solutions are

mixed 1:1 with RADA16-I solution (1% w/v), they form highly

viscous gel solutions. A molecular model representing the self-

assembling peptide RADA16-I and the derived PRG are depicted

in Fig. 1.

These designer peptide nanofiber scaffolds offer several

advantages that include 1) easy design using known, biologically

active motifs, 2) commercially custom-synthesized with mature

solid phase peptide synthesis technology 3) selection of an

extensive repertoire of biological active motifs detected in some

extracellular matrix components and cell secreted peptide or

protein.

Structural study of the designer peptides
We studied nanofiber formation using Atomic Force Microscope

(AFM). It has been previously reported that b-sheet structures of

self-assembling peptides may be a prerequisite for self-assembly

process into nanofibers[1,2]. We used AFM (Tapping Mode) to

analyze the formation of nanofibers because it allowed us to

measure soft, fragile, and adhesive surfaces without damaging the

samples. We examined 1% (w/v) peptide solution of RADA16,

ALK, DGR, PRG and 1% (w/v) solution of ALK, DGR and PRG

mixed with RADA16 at a ratio 1:1. AFM images of RADA16,

PRG separately and PRG-RADA16 composite are shown in Fig. 2.

The nanofibers in aqueous solutions were observed in RADA16

and all RADA16 mixed solutions. These results were confirmed by

Table 1. Functionalized peptide scaffolds used in this study
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Name Sequences Description

RADA16 Ac(RADA)4CONH2 Designed

ALK Ac(RADA)4GGALKRQGRTLYGF-CONH2 From Osteogenic growth
peptide

DGR Ac(RADA)4GGDGRGDSVAYG-CONH2 From cell adhesion domain
(Osteopontin)

PRG Ac(RADA)4GPRGDSGYRGDS-CONH2 2-unit RGD motifs

The sequences are from N–.C. Ac = acetylated N-termini, 2CONH2 = amidated
C-termini. The peptide motif sources from various protein origins. The 2-unit
RGD motifs are purely molecular designed.
doi:10.1371/journal.pone.0000190.t001..
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Figure 1. Molecular models of pure and designer peptide nanofibers. A)
Models represent peptide RADA16, ALK, DGR and PRG from Table 1. B)
Model representing a b-sheet double-tape of a self-assembling peptide
nanofiber with PRG motif (4:1). Note the sequences PRG extending out
from the nanofiber double-tape.
doi:10.1371/journal.pone.0000190.g001
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visual inspection of increasing viscosity of the peptide scaffold

solutions. We observed an increase in the fiber thickness in e)

ALK+RADA16 (1:1) (D = 35.562.9 nm), f) DGR+RADA16 (1:1)

(D = 26.662.4 nm) and g) PRG+RADA16-I (1:1) (D = 29.56

3.1 nm) from a) RADA16 (D = 16.361.4 nm) as shown in Table 2.

The molecular length of the peptides are RADA16, 5.9 nm; ALK,

10.7 nm; DGR, 10.0 nm; and PRG, 10.3 nm. The width of the

peptide fiber thickness, based on the model shown in Fig. 1 are e)

ALK+RADA16: 15.5 nm, f) DGR+RADA16: 14.1 nm) and g)

PRG+RADA16: 14.7 nm). Table 2 shows the width of fiber

considering the size effects of the AFM probe tip [20] and

measured AFM. Given that the nanofibers were hydrated with

water, the results are consistent. These results show that ALK and

PRG solution cannot form nanofibers alone; instead, they may

form a nanofiber scaffold when the individual ALK and PRG

peptides are integrated into the RADA16 peptide nanofibers as

proposed in the molecular model.

Cell growth on functionalized peptide matrices
We evaluated cell growth on functionalized peptide matrices by

growing pre-osteoblast MC3T3E1 cells on the peptide scaffolds in

culture inserts for two weeks. The cell numbers were calculated

from DNA content extracted from the scaffolds. The cell numbers

in each insert on the different scaffolds are shown in Fig. 3 after

2 weeks of continuous culturing. As expected, in the sequences

contain RGD (DGR and PRG) cell proliferation was increased in

comparison to the pure self-assembling peptide RADA16 alone,

which does not contain RGD. ALK, DGR and PRG also showed

statistically significant cell proliferation in comparison to RADA16

scaffold. These results reveal that the designer peptide scaffolds

promote bone cell proliferation. These results are consistent with

our previous report of adult mouse neural stem cell behaviors [15].

Osteogenic differentiation of MC3T3 on

functionalized peptide scaffolds
In order to evaluate the level of MC3T3-E1 differentiation, we

used both ALP activity and osteocalcin concentration secreted in

culture medium as markers, because ALP activity is considered an

early marker for osteoblastic differentiation, but osteocalcin is con-

sidered a later differentiation marker related to bone biominer-

alization [14,21]. MC3T3E1 cells on the peptide scaffolds were

cultured in the tissue culture inserts for two weeks.

ALP activities were measured by ALP fluorometric assay using

cell lysates. ALP activities were normalized by DNA measurement.

Fig. 4A shows the ALP activities of MC3T3 cultured on the

peptide scaffolds. Cells in ALK, DGR and PRG scaffolds show the

higher ALP activity in comparison to the pure peptide scaffold

Figure 2. Tapping Mode AFM images of 1% (w/v) peptides solution of A) RADA16, B) PRG alone, C) PRG+RADA16 (1:1). The bar represents 100 nm.
The nanofiber formation is seen in A) RADA16 and C) PRG+RADA16 (1:1). An increase in the fiber thickness in C) PRG+RADA16 (1:1) (D = 29.563.1 nm)
from A) RADA16 (D = 16.361.4 nm) was observed, which correlated to the width of the peptide fiber modeled in Fig. 1.
doi:10.1371/journal.pone.0000190.g002

Table 2. Nanofiber width from molecular models and AFM
measurements

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Peptides fiber width AFM tip width)
(Peptide length
w/size adjusted**)

a) RADA16 5.9 nm 12.1 nm 16.361.4 nm

b) ALK: 10.7 nm 16.9 nm –

c) DGR: 10.0 nm 16.2 nm –

d) PRG: 10.3 nm 16.5 nm –

e) ALK+RADA16 15.5 nm* 21.7 nm 35.562.9 nm

f) DGR+RADA16 14.1 nm* 20.3 nm 26.662.4 nm

g) PRG+RADA16 14.7 nm* 20.9 nm 29.563.1 nm

* according to the molecular model proposed in Fig. 1
**based on the estimation Wadj = Width+2(2RtH-H2)1/2, Rt = AFM tip size

(,10 nm), H: sample height (,0.5 nm) [20]
doi:10.1371/journal.pone.0000190.t002..
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Figure 3. Cell numbers are calculated from DNA measurement on
various scaffolds. MT3T3-E1 cells were cultured for 2 weeks on different
scaffolds. RADA16:RADA16 1% (w/v), ALKmx:ALK 1% (w/v)+RADA16,
DGRmx:DGR 1% (w/v)+RADA16, PRGmx: PRG 1% (w/v)+RADA16 (all mix
ratio is 1:1). For peptide scaffolds containing active peptides, the cell
proliferation rate is higher than that of pure RADA16. *p,0.01;
suggesting it is significant against the number of cells grown in pure
RADA16 scaffold.
doi:10.1371/journal.pone.0000190.g003
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RADA16. Cells in ALK and PRG scaffolds showed statistically

significant higher ALP activity than cells cultured in RADA16

scaffolds.

We also measured the amount of Osteocalcin in the culture

media using EIA method. Fig. 4B shows osteocalcin concentration

secreted in tissue culture medium. Cells in all designer peptide

scaffolds produced higher amounts of osteocalcin in comparison to

cells in pure RADA16 scaffold. Cells in PRG scaffold produced

significantly higher concentration of Osteocalcin in comparison to

the other scaffolds.

We also measured the ALP production in the cells since it is

known that ALP activity correlates with bone formation at

particular stages. The results of ALP staining of MC3T3-E1 cells

cultured on the scaffolds for two weeks are shown in Fig. 5. The

bluish intensity is directly proportional to the ALP activity.

However cells in RADA16 scaffold had lower cell adhesions and

lower ALP activities. The cell attachment increase in DGR and

PRG scaffolds were expected because they contain the RGD cell

attachment sequence. Cells in ALP, DGR and PRG scaffolds

again showed both higher cell attachment and higher ALP

activities than cells in pure RADA16 scaffold. In particular, the

ALP staining intensity of cells in the PRG scaffold is significant.

The staining intensities of the ALP activities shown in Fig. 5

suggested the active bone cell differentiation.

Effects of mix % of designer and RADA16-I scaffolds
In order to evaluate the effects of mix ratio of designer peptide and

pure peptide scaffolds, we cultured MC3T3-E1 cells on the differ-

ent scaffolds consisting of a different mix ratio of designer PRG

and RADA16 scaffolds for 1 week. Fig. 6 shows the calculated cell

numbers from DNA content measured in the scaffolds. When

PRG scaffold was increased from 0 to 40%, there was a ,3-fold

increase of cell proliferation as determined by the DNA concen-

tration assay of cells from PRG scaffold. Nevertheless, there was

drop in cell proliferation at 100% PRG scaffold; this result suggests

that 40% may be an optimal mix ratio of PRG and RADA16

scaffold for bone cell proliferation.

The cell morphology was also examined on the different

scaffolds of different mix ratio, using calcein-AM staining, which

stains whole living cells (Fig. 7). The cells in 1% PRG scaffold

showed different cell distribution in comparison to pure scaffold

(0%). This observations reveal that even PRG as low as 1% is

effective for increasing cell adhesion to the scaffold. There is

significant morphological difference in Fig. 7C (10%) and Fig. 7D

(40%): the cell shape was changed from flat into spindle-shaped. In

Fig. 7 C, cells were on the surface of the scaffold, but in Fig. 7D,

cells spontaneously migrated into 3-D scaffold.

Figure 4. A) ALP activity normalized by DNA amount cultured on the different hydrogels for two weeks. RADA16:RADA16 1% (w/v), ALKmx: ALK 1%
(w/v)+RADA16-I, DGRmx:DGR 1% (w/v)+RADA16, PRGmx:PRG 1% (w/v)+RADA16 (all mixture ratio is 1:1). ALK, DGR and PRG show the higher ALP
activity compared to RADA16-I. *p,0.01 suggesting it is significant against the ALP activity in pure RADA16-I. B) Osteocalcin content secreted in
culture medium after culturing on the different hydrogels for two weeks. RADA16:RADA16 1% (w/v), ALKmx:ALK 1%(w/v)+RADA16, DGRmx:DGR
1%(w/v)+RADA16, PRGmx:PRG 1% (w/v)+RADA16 (all mixture ratio is 1:1). All modified peptides (ALK, DGR and PRG) show the higher osteocalcin
contents compared to pure RADA16. PRG has a significantly higher concentration compared to the other scaffolds. *p,0.01 suggesting it is
significant against Osteocalcin in RADA16 scaffold.
doi:10.1371/journal.pone.0000190.g004

Figure 5. ALP Staining images after culturing on the different hydrogels
for two weeks. The bar represents 100 mm. RAD-I:RADA16 1% (w/v),
ALKmx:ALK 1% (w/v)+RADA16, DGRmx:DGR 1% (w/v)+RAD, PRGmx:PRG
1% (w/v)+RADA16 (all mixture ratio is 1:1). The bluish color intensity
correlates with the high ALP activity. RADA16 shows low cell adhesion
to the hydrogel and the cells are aggregated. The cell attachment
increases in DGR and PRG scaffolds were considered as a result of RGD
cell attachment sequence. ALP, DGR and PRG showed higher ALP
activities compared to RADA16-I, especially staining intensity of PRG.
doi:10.1371/journal.pone.0000190.g005
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Cell migration into designer 3D scaffold but not

pure RADA16 scaffold
Spontaneous cell migrations were observed using the confocal

microscopy 3-D image collections and reconstructions. These

results in Fig. 8 showed the reconstruction images of PRG 10% (A)

and of PRG 70% (B). In the case of cells in PRG 10% scaffold, the

cells were attached on the surface of the peptide scaffold and did

not penetrate into the scaffold (A2). However cells in the scaffold

made of PRG 70%, the cells spontaneously migrated into the

scaffold for ,300 mm (B2). The migrated cells could be visualized

clearly with the confocal imaging. The results demonstrate under

otherwise identical culture medium conditions that higher con-

centration alone of PRG stimulated cell migration into the 3-D

peptide nanofiber scaffold. This is a significant finding that a simple

motif could have drastic influence on cell behaviors. It is much

easier to produce the designer scaffold than to find complex and

expensive soluble factors that show similar cell behavior. Again,

these results are consistent with our previous observation of adult

mouse neural stem cells that also migrate into the biologically

functionalized 3D scaffolds.

DISCUSSION

Fine control of designer peptide scaffolds
In this study, we selected three peptide motifs including osteogenic

growth peptide derived motif (ALK: ALKRQGRTLYGF),

Osteopontin cell adhesion motif (DGR: DGRGDSVAYG) and

a biomimic designed two-unit RGD binding sequence (PRG:

PRGDSGYRGDS) to directly extend the carboxyl termini of the

self-assembling peptide AcN–RADARADARADARADA–

CONH2 and obtain the designer self-assembling scaffolds.

Although many more designer peptide scaffolds have been studied,

these three showed the best results for bone cell activities. We thus

studied them in further detail.

Figure 6. Cell numbers on the different scaffolds of different mix ratio of
designer PRG and pure RADA16 scaffolds after 1-week culture. There is
an increase in proliferation following the increase PRG % scaffold when
increased from 0 to 40%. There was a decrease in cell proliferation at
PRG 100% suggesting that there is an optimal ratio of PRG and RADA16
scaffolds.
doi:10.1371/journal.pone.0000190.g006

Figure 7. Cell morphology on the different scaffolds of various mix ratios of RADA16 1% (w/v) and PRG 1% (w/v) using calcein-AM staining. The bar
represents 100 mm. A) RADA16 100%:PRG 0%, B) PRG 1%, C) PRG 10%, D) PRG 40%, E) PRG 70%, F) PRG 100% (RADA16: 0%). B) PRG: 1% shows
uniform cell distribution compared to (A) 0%, which shows the increase of cell attachment. There is significant morphological difference in (C) 10%
and (D) 40%, as seen by a change in cell shape from elongated form to asteroid form.
doi:10.1371/journal.pone.0000190.g007

Figure 8. Reconstructed image of 3-D confocal microscope image of
culturing on the different scaffolds consisting of different mix ratio of
RADA16 1% (w/v) and PRG 1% (w/v) using calcein-AM staining. The bar
represents 100 mm. A1 and A2: PRG 10% and B1&B2: PRG 70%. A1 and
B1 are vertical view and A2 and B2 are horizontal view. In the case of
10% PRG scaffold, the cells were attached on the surface of the scaffold
whereas the cells were migrated into the scaffold in the case of 70%
PRG scaffold. There is a drastic cell migration into the scaffold with
higher concentration of PRG motif.
doi:10.1371/journal.pone.0000190.g008
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We examined not only the fine structures of the self-assembling

peptide scaffolds comprising designer peptides and RADA16, but

we also showed that functional self-assembling peptide scaffolds

are readily formed by direct extension of the motif to self-

assembling RADA16 peptide and through mixing these peptide

scaffolds.

Designer peptide scaffolds for bone cell studies
We showed that the designer scaffolds with biologically active

motifs are better suited for bone cells than the pure RADA16

scaffold alone. This simple method will likely become very useful

than those of polymer or natural collagen scaffold functionaliza-

tion through chemical modification. Similar results were also

obtained when study adult mouse neural stem cells using both

pure and specifically designer scaffolds [15].

We then evaluated biological function of these designer peptides

and pure RADA16 scaffolds for mouse pre-osteoblast MC3T3E1

cell proliferation. All three designer peptide scaffolds showed

a significantly higher cell proliferation in comparison to the pure

RADA16 scaffold, thereby suggesting that the designer peptide

scaffolds promote pre-osteoblast proliferation.

We also evaluated the effect of the designer scaffolds for pre-

osteoblast differentiation not only using alkaline phosphatase (ALP)

activity as an early differentiation marker but also using secreted

osteocalcin as a later differentiation marker relevant to biominer-

alization. ALK, DGR and PRG scaffolds showed both statistically

significant ALP activity and osteocalcin concentration in compar-

ison to pure RADA16 scaffold alone. Although the results in ALP

activity and osteocalcin were correlated, the variations between

scaffolds were larger in osteocalcin concentration than in ALP

activity. This suggests that the effect of designer scaffolds appears

more important in the later stage of differentiation.

The designer peptides DGR and PRG contain RGD cell

attachment motif for integrin receptors. RGD sequence is known

to promote osteoblast proliferation and differentiation[6,14].

However PRG, which has two repetitive RGD sequences, has

approximately five times higher osteocalcin secretion than DGR,

which contains an RGD sequence.

For marrow stromal cells cultured on the polymer scaffold

modified with an RGD sequence by linker polymer, others

reported that the cell attachment was increased when the linker

length was longer than the polymer cross-linking length[13]. In

our current study of DGR peptide, the linker length between

RGD sequence and RADA16 is 1.38 nm, whereas the distance

between 2nd RGD sequence and RADA16 is 2.75 nm. The

difference of linker length may influence the effectiveness of RGD

sequence for cell attachment, and hence, differentiation. It has

been reported that 3-D structure of RGD sequence in the scaffold

may also affect the difference. Also linear RGD and cyclic RGD

are known to stimulate different degrees of cell attachment, this is

presumably given by the different 3-D structure of the two

configurations[22,23]. The difference may influence osteoblast cell

attachment in vitro culture and bone formation in vivo[24].

The concentration effect of designer peptide

scaffolds
We evaluated the effect of the concentration of designer peptide

containing 2 units of RGD (PRG). Our study showed that even

1% PRG:99% RADA16 mixed scaffolds promote cell attachment,

and proliferation. The cells were on the surface of the scaffold. On

the other hand, when we used 40% PRG:60% RADA16 and 70%

PRG:30% RADA16 mix ratios, cells not only spontaneously

migrated into the scaffolds and retained the cell morphology but

also showed an asteroid form. It has been suggested that different

cell shapes showed different cell phenotype[25]. We demonstrated

that the PRG peptide scaffold both encourages cell 3-D migration

and promotes differentiation at the same time.

Other advantages of designer peptide scaffolds
Previous studies show that scaffolds such as Demineralized Bone

Matrix (DBM), collagen and alginate with solid porous scaffold

composite composed with Hydroxyapatite, tricalcium-phosphate

and polymer promote bone regeneration in vitro and in vivo [26–

28]. However, these natural derived hydrogel biomaterials have

several concerns for clinical use, 1) risk of infection agents from

animals to human, 2) reproducible quality control, 3) limited

shelf-life and 4) difficulty in effectively functionalizing the

biomaterial[29]. Thus, attempts have been made to mimic the

3-D nanostructure of natural extracellular matrices with synthetic

materials using electrospinning techniques[30], self-assembling

peptide scaffolds and self-assembly of peptide chimerical amphi-

philic nanofibers[31,32].

Self-assembling peptide nanofiber scaffolds are biodegradable

by a variety of proteases in the body with superior biocompatibility

with the tissues (29). These self-assembling peptide scaffolds have

an advantage in that they can be manufactured by a conventional,

commercially chemical peptide synthesis methods and the cost is

reducing steadily. This study further suggests that the second

generation designer self-assembling peptide scaffolds may become

superior designer biological functionality to nature derived

extracellular matrices through molecular design of the scaffolds

by direct addition of active and functional motifs selected from

extracelluar matrices and cell secreted soluble peptides and

proteins.

A wide range of designer, self-assembling peptide scaffolds for

tissue regeneration in animal models is currently under evaluation

in order to provide an effective strategy for regenerative medicine.

The composite of the designer self-assembling peptides with solid

porous scaffold including tricalcium-phosphate for specific bone

regeneration are under further study.

Conclusions
We have developed new biomimetic designer self-assembling

peptide scaffolds to enhance pre-osteoblast proliferation, differen-

tiation and migration. These designer self-assembling peptide

scaffolds with mixing RADA16 showed remarkable effectiveness at

enhancing cellular proliferation and differentiation activities. We

selected three active motifs from cell secreted signal peptide

(osteogenic growth peptide), call attachment domain of extracel-

lular matrix (osteopontin) and designed RGD cell attachment

sequence. This study clearly demonstrated that the designer self-

assembling peptide scaffolds significantly enhanced mouse pre-

osteoblast cell proliferation and differentiation as well as stimulat-

ing cell migration into the 3D scaffold.

Our study reported here has far reaching implications beyond

the current study. The simple addition of short, biologically active

peptide motifs can significantly enhance particular cellular activi-

ties, thus open a new avenue to design new biologically active

scaffolds for a widespread use, not only for specific cell cultures,

but also for specific tissue repair, tissue engineering and regener-

ation medicine.

MATERIALS AND METHODS

Materials
RAD16 solution (1%) was purchased as PuraMatrix from BD

Bioscience, Bedford, MA. These designer peptides were custom-
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synthesized (Synpep Corporation, CA and Genscript Corp. NJ).

They were dissolved in water at a final concentration of 1% (w/v)

and sonicated for 20 min (aquasonic, model 50 T, VWR, NJ).

The designer peptide solutions were then mixed at a ratio of

1:1 with 1% PuraMatrix solution, except otherwise stated. Each

of the peptide solutions was directly loaded in the tissue

culture plate inserts (10 mm diameter, Millicell-CM, Millipore,

MA). The maintenance medium was added to induce hydrogel

formation.

Reagents
To maintain the MC3T3-E1 cell line, penicillin/streptomycin,

minimal essential medium and FBS were obtained from Invitrogen

Corp. (Carlsbad, CA, USA). Ascorbic acid and b-glycerophos-

phate were from Sigma Chemical Co. (St Louis, MO, USA).

PicoGreenH dsDNA Quantitation kit (P-7589, Invitrogen, Eugen,

OR) for DNA, Alkaline Phosphatase Fluorescence Assay Kit

(Sigma, MO) for ALP activity and Mouse Osteocalcin EIA Kit

(Biomedical Technologies Inc., MA) is used for Osteocalcin. The

histological assays made use of Alkaline Phosphatase kit (85L-2,

Sigma, MO) and calcein-AM staining (Live/Dead Viability kit

L-3224, Molecular Probes, OR).

Structural study using atomic force microscopy

(AFM)
Peptide from stock solutions (0.5%) was diluted to a working

concentration of 0.01% (w/v), after 30 min sonication, subsequent

after 2 hours stationary incubation at room temperature. Atomic

force microscopy (AFM) images were collected with a silicon

scanning probe (FESP, Vecco Probe Inc., CA) with a resonance

frequency of 75 KHz, spring constant 2.8 N/m, tip curvature

radius 10 nm and 225 um length. Images were obtained with

a Multimode AFM microscope (Nanoscope IIIa, Digital Instru-

ments, CA) operating in Tapping Mode. Typical scanning

parameters were as follows: tapping frequency 75 KHz, RMS

amplitude before engage 1–1.2 V, set point 0.7–0.9 V, integral

and proportional gains of 0.2–0.6 and 0.4–1.0 respectively, and

scan rate 1.51 Hz.

Preparation of MC3T3-E1 cells
Mouse pre-osteoblast cell line MC3T3-E1 (subclone 4) (ATCC,

VA) was purchased for this study. Cells were maintained in the

maintenance medium consisting of a modified essential medium

with 10% FBS and 1.5% penicillin/streptomycin. The medium

was changed every 3 days. When the cells became sub-confluent,

they were detached from the flask by treatment with aqueous

solution of 0.25% trypsin for 5 min at 37uC. The cells were

normally sub-cultured at a density of 56103 cells/cm2.

Cell culture system
The scaffolds 1.0% (w/v) were prepared as pure RADA16 or

mixed with others at a radio of 1:1 (v/v) (RADA16:ALK, DGR or

PRG (Table 1). Each solution was sonicated for 30 min and

loaded (100 ml) on top of a cell culture insert (10 mm diameter,

Millicell-CM, Millipore, MA) and allowed to form a layer ,1 mm

thick. The maintenance medium described later was gently added

on the top of the scaffold to induce gelation.

The system was incubated at 37uC for 1 hour. Then the medium

inside the insert was exchanged by the maintenance medium and

the outside of the insert was filled with the maintenance medium

and incubated for half a day within a cell culture incubator at

37uC with 5% CO2.

Cells were plated at 26104 cells on the hydrogels in the inserts.

The cells were cultured in the maintenance medium Day 0 through

Day 2 and then converted into the differentiation media

supplemented with L-Ascorbic acid 50 mg/ml and glyceropho-

sphate 10 mM. The media were changed every three days. The

gel, cell lysis and culture medium were harvested at 14 days of

culturing for analysis.

DNA content measurement
The number of cells on the scaffold was determined by the

fluorometric quantification of amount of cellular DNA. The cell-

seeded scaffold was rinsed with PBS and recovered by Na Citrate

buffer solution containing 50 mM Na Citrate and 100 mM NaCl

and stored at 280u C until assay. After thawing, the cells were

lysed in the Na Citrate solution with occasional mixing. The

10 mml of cell lysate (400 ml/insert) was mixed with Na Citrate

buffer (100 ml) and DNA binding fluorescent dye solution (0.5 ml

Picogreen reagent in 100 ml 1XTE buffer). The fluorescent

intensity of the mixed solution was measured on a fluorescence

spectrometer (Wallace Victor2, 1420 Multi-label counter, Perkin-

Elmer, MA, Ex 485 nm/Em 510 nm). The calibration curve

between the DNA and cell number was prepared by use of cell

suspensions with different cell densities.

Biochemical assays for alkaline phosphatase (ALP)

activity
ALP activity in the cells on hydrogel was determined by

fluorometric quantification. The cell-seeded hydrogel was rinsed

with saline and recovered by ALP lysis buffer containing 2 mM

MgCl2 and 0.05% Triton X-100 and then stored with at 280uC
until assay. After thawing, the cells were lysed in the ALP lysis

solution with occasional mixing. The 20 ml of cell lysate (300 ml/

insert) was mixed with 20 ml MgCl2 solution and 150 ml

Fluorescent Assay Buffer both provided in Alkaline Phosphatase

Fluorescence Assay Kit (Sigma, MO). Then 1 ml of suspended

substrate (4-Methylumbelliferyl Phosphate, 10 mM) was added

and incubation occurred at the room temperature for 1 hour. The

fluorescent intensity of the mixed solution was measured on

a fluorescence spectrometer (Wallace Victor-2, 1420 Multi-label

counter, Perkin-Elmer, MA, Excitation 355 nm-Emission

460 nm). The calibration curve between the ALP activity and

fluorescent was prepared by use of Alkaline Phosphatase (control

enzyme) with different concentration.

Biochemical assays for Osteocalcin
Osteocalcin was measured from cell culture medium using Mouse

Osteocalcin EIA Kit (Biomedical Technologies Inc., MA) accord-

ing to the manufacturer’s protocol. Briefly, the medium was

diluted by Milli-Q water6200; 25 ml of the diluted medium and

100 ml osteocalcin antiserum were placed in 96 well EIA plates

and incubated at 4uC for 18–24 hours. The well was washed with

PBS and 100 ml Streptavidin-Horseradish reagent was added and

incubated for 30 minutes. 50 ml of TMB solution and Hydrogen

Peroxide solution were added and incubated for 15 minutes at

room temperature. After adding 100 ml stop solution, absorbance

was measured at 405 nm on a colorimetric microplate reader

(vmax kinetic microplate reader, Molecular Device, CA)

Alkaline Phosphatase (ALP) staining
ALP staining was conducted using Alkaline Phosphatase Staining

kit (85L-2, Sigma, MO) according to the manufacturer’s protocol.

Briefly, cells on the scaffold in the inserts were washed twice in
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saline, fixed for 6 min at room temperature in Citrate fixative

solution contained in the kit, and then washed by Mill-Q water.

AS-MX solution in the kit was added to the insert and incubated

at room temp for 30 min. The insert was rinsed well by Mill-Q

water for 3–4 times and the cells were observed under a light

microscope.

The effects of the mix ratio of functionalized and

non-functionalize peptides
The effects of the mix ratio of functionalized peptide and non-

modified peptide were studied using the PRG with the basic

RADA16. A glycine was added to the C terminal (Ac-(RADA)4-

GPRGDSGYRGDSG-CONH2) to PRG peptide. This modifica-

tion makes PRG form the self-assembling hydrogel stably without

disturbing biological function. The mix ratio between RADA16

and PRG was varied from 100:0 (PRG 0%), 99:1 (1% PRG), 90:10

(10% PRG), 60:40 (40% PRG), 30:70 (70% PRG) up to 0:100

(100% PRG). The other culturing conditions were as described

above except that the cell was cultured for 7 days. The cell

number was measured by the method described in the method

section. The cell morphology on the hydrogel was examined using

calcein-AM staining (Live/Dead Viability kit L-3224, Invitrogen,

Eugene, OR) according to the manufacturer’s protocol.

Briefly, cells on the peptide scaffolds of the inserts were washed

twice using PBS. Then 4 mM calcein AM solution was added to

the insert and incubated for 1 hour with in the incubator at 37uC
with 5% CO2. The inserts were rinsed well by PBS for 2 times and

the cells were examined under an optical microscope.

Statistical analysis
All the data were statistically analyzed to express in the standard

deviation (SD) of the mean. The t-test was performed and p,0.05

was accepted to be statistically significant.
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